Bio-Inspired Fault Diagnosis for Aircraft Fuel Pumps Using a Cloud-Edge System

Author:

Miao Yang12ORCID,Li Yantang1,Pan Jun3,Liu Zhen1,Liu Lei4,Wang Zeng5,Wang Zijing6

Affiliation:

1. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

2. Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China

3. AVIC Nanjing Electromechanical Hydraulic Engineering Center, Nanjing 211102, China

4. Land Space Technology Huzhou Co., Ltd., Huzhou 313099, China

5. China Aerospace Science and Technology Corporation, Beijing 100076, China

6. Beijing Institute of Radio Measurement, Beijing 100143, China

Abstract

The fuel pump serves as the central component of the aircraft fuel system, necessitating real-time data acquisition for monitoring purposes. As the number of sensors increases, there is a substantial rise in data volume, leading to a simultaneous increase in computational processing for traditional Prognostics and Health Management methods while computational efficiency decreases. In response to this challenge, a novel health monitoring approach for aircraft fuel pumps is proposed based on the collaborative utilization of cloud-edge resources. This approach enables efficient cooperation among the sensor side, edge side, and cloud side to achieve timely fault warnings and accurate fault classification for fuel pumps. Within this method, anomaly judgment tasks are allocated to the edge side, and an anomaly judgment method that integrates the 3σ threshold and “3/5 strategy” is devised. Additionally, a fault diagnosis algorithm, founded on a convolutional auto-encoder, is formulated in the cloud to discern various fault types and severities. Comparative results demonstrate that, in contrast to long short-term memory networks, convolutional neural networks, extreme learning machines, and support vector machines, the proposed method yields improvements in accuracy of 4.35%, 6.40%, 17.65%, and 19.35%, respectively. Consequently, it is evident that the proposed method exhibits notable efficacy in the condition monitoring of aircraft fuel pumps.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3