Functional Grading of Mycelium Materials with Inorganic Particles: The Effect of Nanoclay on the Biological, Chemical and Mechanical Properties

Author:

Elsacker Elise,De Laet Lars,Peeters Eveline

Abstract

Biological materials that are created by growing mycelium-forming fungal microorganisms on natural fibers can form a solution to environmental pollution and scarcity of natural resources. Recent studies on the hybridization of mycelium materials with glass improved fire performance; however, the effect of inorganic particles on growth performance and mechanical properties was not previously investigated. Yet, due to the wide variety of reinforcement particles, mycelium nanocomposites can potentially be designed for specific functions and applications, such as fire resistance and mechanical improvement. The objectives of this paper are to first determine whether mycelium materials reinforced with montmorillonite nanoclay can be produced given its inorganic nature, and then to study the influence of these nanoparticles on material properties. Nanoclay–mycelium materials are evaluated in terms of morphological, chemical, and mechanical properties. The first steps are taken in unravelling challenges that exist in combining myco-fabrication with nanomaterials. Results indicate that nanoclay causes a decreased growth rate, although the clay particles are able to penetrate into the fibers’ cell-wall structure. The FTIR study demonstrates that T. versicolor has more difficulty accessing and decaying the hemicellulose and lignin when the amount of nanoclay increases. Moreover, the addition of nanoclay results in low mechanical properties. While nanoclay enhances the properties of polymer composites, the hybridization with mycelium composites was not successful.

Funder

Research Foundation - Flanders

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3