Abstract
Specific physiological changes during pregnancy exert excessive strain on muscles such as the erector spinae (ES) and contribute to low back pain (LBP). The link between LBP and sit-to-stand (STS) motion has previously been investigated through motion analysis using an inertial measurement unit (IMU); however, the factors leading to LBP have not been revealed. Moreover, clinicians require an effective assessment method for reducing the physical burden on pregnant women. Therefore, the investigation of the relationships between motion, muscle load calculated from musculoskeletal model for pregnancy, and the severity of LBP during STS in pregnant women was conducted. Furthermore, this study proposes a method for assessing motion and muscle load during STS using an IMU. The relationship among (i) motion evaluation indices and ES muscle torque, and (ii) the ES torque and the intensity of LBP during STS was investigated. As the results, significant positive correlations were observed between (i) the angular velocity of the torso in the sagittal plane and ES torque, and (ii) two types of evaluation indices of ES torque and intensity of LBP. The proposed method by an IMU attached to the torso could effectively assess ES load related to LBP during STS in pregnant women.
Funder
Japan Society for the Promotion of Science
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献