Synthesis of Novel Potent Biologically Active N-Benzylisatin-Aryl Hydrazones in Comparison with Lung Cancer Drug ‘Gefitinib’

Author:

Al-Salem Huda S.,Abuelizz Hatem A.ORCID,Issa Iman S.,Mahmoud Amany Z.ORCID,AlHoshani Ali,Arifuzzaman Md,Rahman A. F. M. MotiurORCID

Abstract

Developing anticancer therapeutics with no/few side effects is a challenge for medicinal chemists. The absence of antibacterial activity of an anticancer drug removes its detrimental effect toward intestinal flora and therefore leads to reduced side effects. Here, a series of novel N-benzylisatin-aryl-hydrazones was designed, synthesized and evaluated for their antimicrobial and antiproliferative activities with SAR and ADME studies, aiming to develop anticancer drugs with no antimicrobial, yet high antiproliferative activities. The results were then compared with the effects of first-line treatments for lung cancer drug Gefitinib. Novel N-benzylisatin-aryl-hydrazones were synthesized from isatin and benzyl bromide in three steps with good to moderate yields. Antimicrobial activity was tested with six Gram-positive/negative bacterial strains, antifungal activity with a fungal strain and antiproliferative activity against ‘A549’ and ‘HeLa cell lines’, respectively. As expected, synthesized hydrazones reveled no effects on any of the strains of bacteria and fungi up to 100-µg/disc concentration. However, four compounds showed two-to-four fold antiproliferative activity over Gefitinib. For instance, IC50 of a compound (6c) shows concentration of 4.35 µM, whereas gefitinib shows 15.23 µM against ‘A549.’ ADME predicted studies reveled that our synthesized hydrazones exhibited higher ADME values than the Gefitinib. Therefore, our synthesized hydrazones can be an excellent scaffold for the development of anticancer therapeutics after considering further investigations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3