An Economic Model to Assess Profitable Scenarios of EAF-Based Steelmaking Plants under Uncertain Conditions

Author:

Facchini FrancescoORCID,Mossa GiorgioORCID,Mummolo GiovanniORCID,Vitti MicaelaORCID

Abstract

The steelmaking processes are considered extremely energy-intensive and carbon-dependent processes. In 2018, it was estimated that the emissions from global steel production represented 7–9% of direct emissions generated by fossil fuels. It was estimated that a specific emissions value of 1.8 tCO2 per ton of steel was produced due to the carbon-dependent nature of the traditional blast furnace and basic oxygen furnace (BF-BOF) route. Therefore, it is necessary to find an alternative solution to the BF-BOF route for steel production to counteract this negative trend, resulting in being sustainable from an environmental and economic point of view. To this concern, the objective of this work consists of developing a total cost function to assess the economic convenience of steelmaking processes considering the variability of specific market conditions (i.e., iron ore price, scraps price, energy cost, etc.). To this purpose, a direct reduction (DR) process fueled with natural gas (NG) to feed an electric arc furnace (EAF) using recycled steel scrap was considered. The approach introduced is totally new; it enables practitioners, managers, and experts to conduct a preliminary economic assessment of innovative steelmaking solutions under market uncertainty. A numerical simulation has been conducted to evaluate the profitability of the investment considering the economic and environmental costs. It emerged that the investment is profitable in any case from an economic perspective. On the contrary, considering the environmental costs, the profitability of the investment is not guaranteed under certain circumstances.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

1. A General Vision for Reduction of Energy Consumption and CO2 Emissions from the Steel Industry

2. Prospective Scenarios on Energy Efficiency and CO2 Emissions in the EU Iron & Steel Industry;Pardo,2012

3. The European Parliament, Establishing the Framework Fir Achieving Climate Neutrality and Amending Regulations https://data.consilium.europa.eu/doc/document/PE-27-2021-INIT/en/pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3