Estimation of 1-km Resolution All-Sky Instantaneous Erythemal UV-B with MODIS Data Based on a Deep Learning Method

Author:

Zhao Ruixue,He TaoORCID

Abstract

Although ultraviolet-B (UV-B) radiation reaching the ground represents a tiny fraction of the total solar radiant energy, it significantly affects human health and global ecosystems. Therefore, erythemal UV-B monitoring has recently attracted significant attention. However, traditional UV-B retrieval methods rely on empirical modeling and handcrafted features, which require expertise and fail to generalize to new environments. Furthermore, most traditional products have low spatial resolution. To address this, we propose a deep learning framework for retrieving all-sky, kilometer-level erythemal UV-B from Moderate Resolution Imaging Spectroradiometer (MODIS) data. We designed a deep neural network with a residual structure to cascade high-level representations from raw MODIS inputs, eliminating handcrafted features. We used an external random forest classifier to perform the final prediction based on refined deep features extracted from the residual network. Compared with basic parameters, extracted deep features more accurately bridge the semantic gap between the raw MODIS inputs, improving retrieval accuracy. We established a dataset from 7 Surface Radiation Budget Network (SURFRAD) stations and 1 from 30 UV-B Monitoring and Research Program (UVMRP) stations with MODIS top-of-atmosphere reflectance, solar and view zenith angle, surface reflectance, altitude, and ozone observations. A partial SURFRAD dataset from 2007–2016 trained the model, achieving an R2 of 0.9887, a mean bias error (MBE) of 0.19 mW/m2, and a root mean square error (RMSE) of 7.42 mW/m2. The model evaluated on 2017 SURFRAD data shows an R2 of 0.9376, an MBE of 1.24 mW/m2, and an RMSE of 17.45 mW/m2, indicating the proposed model accurately generalizes the temporal dimension. We evaluated the model at 30 UVMRP stations with different land cover from those of SURFRAD and found most stations had a relative RMSE of 25% and an MBE within ±5%, demonstrating generalization in the spatial dimension. This study demonstrates the potential of using MODIS data to accurately estimate all-sky erythemal UV-B with the proposed algorithm.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3