Abstract
Advances in cell and tissue therapies are slow to be implemented in the clinic due to the limited standardization of safety and quality control techniques. Current approaches for monitoring cell and tissue manufacturing processes are time and labor intensive, costly, and lack commercial scalability. One method to improving in vitro manufacturing processes includes utilizing the coupled magnetic and mechanical properties of magnetoelastic (ME) materials as passive and wireless sensors and actuators. Specifically, ME materials can be used in quantifying cell adhesion, detecting contamination, measuring biomarkers, providing biomechanical stimulus, and enabling cell detachment in bioreactors. This review outlines critical design considerations for ME systems and summarizes recent developments in utilizing ME materials for sensing and actuation in cell and tissue engineering.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献