Effects of Soil Microorganisms on Carbon Sequestration under Different Mixed Modification Models in Pinus massoniana L. Plantation

Author:

Chen Meng12ORCID,Yuan Congjun12ORCID,He Shuang12,Chen Jin12ORCID,Luo Jun12,Ding Fangjun12,Yan Guohua3

Affiliation:

1. Key Laboratory of National Forestry and Grassland Administration of Karst Mountain Biodiversity Conservation in Southwest China of Guizhou Province, Guizhou Academy of Forestry, Guiyang 550005, China

2. The National Positioning Observation and Research Station of Leigong Mountain Forest Ecosystem of Guizhou Province, Kaili 557100, China

3. Guizhou Forest Investigation and Planning Institute, Guiyang 550003, China

Abstract

In forests, microbial populations in the soil can directly influence the decomposition of carbon from surface plants, promoting carbon storage and stability. However, in sustainable forest management, it is still unclear how soil microorganisms under different plantation types affect organic carbon sequestration and whether the mechanisms of influence are the same. In this research, we focused on four mixed forests and pure Pinus massoniana-planted forest in the state-owned forest farm of Dushan County. Three replicated plots were set up for each model, and soil samples were collected from different layers (0–20 cm, 20–40 cm, and 40–60 cm), totaling 45 samples. We elucidated the effects of soil microorganisms on carbon sequestration under five mixed modification models of P. massoniana and further explored the mechanisms by which microbial functional communities regulate soil carbon sequestration under different mixed models through molecular sequencing and collinear network analysis. Variance analysis indicated that the soil organic carbon (SOC) of the same soil layer varied significantly, and there were also significant differences in the composition of soil bacterial and fungal microbial communities. Moreover, the bacterial community was more sensitive to changes in the vegetation environment, while the fungal community structure was more resistant to changes in the soil environment. Correlation analysis indicated that the diversity and composition of the bacterial community had more positive effects on soil organic carbon than those of the fungal community. Linear fitting and redundancy analysis (RDA) showed that particulate organic carbon (POC) in soil had the strongest correlation with SOC content. Soil microorganisms affected the storage and stability of soil carbon mainly by regulating the conversion of litter (carbon sources) into POC. The soil environment of different mixed models had different effects on soil carbon accumulation. Both correlation and collinearity network analyses indicated that soil microbial functional groups could enhance carbon storage by regulating readily oxidizable carbon (EOC) and POC content in mixed forest plantations. The results of our study provide a sound basis for replanting a reasonable forest model structure to improve forest carbon storage.

Funder

Science and Technology Foundation of Guizhou Province

Guizhou Science and Technology Conditions andService Capacity Construction Project

Study on the Carbon Sequestration Capacity of Forests and the Construction of Carbon Sequestration Monitoring System in Guizhou Provincet

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3