Performance of a Diesel Engine Fueled by Blends of Diesel Fuel and Synthetic Fuel Derived from Waste Car Tires

Author:

Jakubowski Mirosław1ORCID,Jaworski Artur1ORCID,Kuszewski Hubert1ORCID,Balawender Krzysztof1ORCID

Affiliation:

1. Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland

Abstract

Waste car tires are a significant burden on the environment. One way to manage them is through energy recovery by burning them in the furnaces of combined heat and power plants or cement plants, which from an environmental point of view is not a favorable solution. Another way to use waste tires is to produce liquid fuels, which can be used as pure fuels or components added to conventional fuels. Therefore, it is necessary to conduct research aimed at evaluating the physical and chemical properties of tire-derived fuels relative to conventional fuels. It is also important to determine the impact of feeding engines with synthetic fuels, regarding their operational and environmental performance. In this article, the physicochemical properties of typical diesel fuel, synthetic fuel derived from waste tires (WT) and its blends with diesel fuel (DF) in shares of 5, 10, 15, 20 and 25% v/v were studied. Tests were also conducted on an internal combustion engine with a common rail injection system (CR IC) engine to determine operational and emission parameters. The results showed, among other things, a deterioration relative to diesel fuel of such parameters as cold filter plugin point (CFPP) and flash point (FP). At the same time, a favorable effect of synthetic fuel addition was noted on hydrocarbon (HC) and nitrogen oxide (NOx) emissions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3