An OVR-FWP-RF Machine Learning Algorithm for Identification of Abandoned Farmland in Hilly Areas Using Multispectral Remote Sensing Data

Author:

Wang Liangsong12,Li Qian13,Wang Youhan14,Zeng Kun14,Wang Haiying14

Affiliation:

1. The Engineering Laboratory of Land and Resources Utilization in Hilly Areas, China West Normal University, Nanchong 637009, China

2. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China

3. Business School, China West Normal University, Nanchong 637009, China

4. School of Geographical Sciences, China West Normal University, Nanchong 637009, China

Abstract

Serious farmland abandonment in hilly areas, and the resolution of commonly used satellite-borne remote sensing images are insufficient to meet the needs of identifying abandoned farmland in such regions. Furthermore, addressing the problem of identifying abandoned farmland in hilly areas with a certain level of accuracy is a crucial issue in the research of extracting information on abandoned farmland patches from remote sensing images. Taking a typical hilly village as an example, this study utilizes airborne multispectral remote sensing images, incorporating various feature factors such as spectral characteristics and texture features. Aiming at the issue of identifying abandoned farmland in hilly areas, a method for extracting abandoned farmland based on the OVR-FWP-RF algorithm is proposed. Furthermore, two machine learning algorithms, Random Forest (RF) and XGBoost, are also utilized for comparison. The results indicate that the overall accuracy (OA) of the OVR-FWP-RF, Random Forest, and XGboost classification algorithms have reached 92.66%, 90.55%, and 90.75%, respectively, with corresponding Kappa coefficients of 0.9064, 0.8796, and 0.8824. Therefore, by combining spectral features, texture features, and vegetation factors, the use of machine learning methods can improve the accuracy of identifying ground objects. Moreover, the OVR-FWP-RF algorithm outperforms the Random Forest and XGboost. Specifically, when using the OVR-FWP-RF algorithm to identify abandoned farmland, its producer accuracy (PA) is 3.22% and 0.71% higher than Random Forest and XGboost, respectively, while the user accuracy (UA) is also 5.27% and 6.68% higher, respectively. Therefore, OVR-FWP-RF can significantly improve the accuracy of abandoned farmland identification and other land use type recognition in hilly areas, providing a new method for abandoned farmland identification and other land type classification in hilly areas, as well as a useful reference for abandoned farmland identification research in other similar areas.

Funder

National Social Science Fund of China

Startup Project of Doctoral Research by China West Normal University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3