Recognition of Severe Convective Cloud Based on the Cloud Image Prediction Sequence from FY-4A

Author:

Chen Qi1ORCID,Yin Xiaobin123,Li Yan1,Zheng Peinan4,Chen Miao5,Xu Qing1ORCID

Affiliation:

1. Faculty of Information Science and Engineering, College of Marine Technology, Ocean University of China, Qingdao 266100, China

2. Laoshan Laboratory, Qingdao 266237, China

3. Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China

4. PLA Unit 31016, Beijing 100081, China

5. Key Laboratory of Science and Technology on Operational Oceanography, Chinese Academy of Sciences, Guangzhou 510301, China

Abstract

Severe convective weather is hugely destructive, causing significant loss of life and social and economic infrastructure. Based on the U-Net network with the attention mechanism, the recurrent convolution, and the residual module, a new model is proposed named ARRU-Net (Attention Recurrent Residual U-Net) for the recognition of severe convective clouds using the cloud image prediction sequence from FY-4A data. The characteristic parameters used to recognize severe convective clouds in this study were brightness temperature values TBB9, brightness temperature difference values TBB9−TBB12 and TBB12−TBB13, and texture features based on spectral characteristics. This method first input five satellite cloud images with a time interval of 30 min into the ARRU-Net model and predicted five satellite cloud images for the next 2.5 h. Then, severe convective clouds were segmented based on the predicted image sequence. The root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and correlation coefficient (R2) of the predicted results were 5.48 K, 35.52 dB, and 0.92, respectively. The results of the experiments showed that the average recognition accuracy and recall of the ARRU-Net model in the next five moments on the test set were 97.62% and 83.34%, respectively.

Funder

Laoshan Laboratory science and technology innovation projects

Hainan Key Research and Development Program

Fundamental Research Funds for the Central Universities

Hainan Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3