Predicting User Preference for Innovative Features in Intelligent Connected Vehicles from a Cultural Perspective

Author:

Ma Jun12,Gong Yuqi1ORCID,Xu Wenxia1

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai 201804, China

2. College of Design and Innovation, Tongji University, Shanghai 200092, China

Abstract

The increasing level of intelligence in automobiles is driving a shift in the human–machine relationship. Users are paying more attention to the intelligent cabin and showing a tendency toward customization. As culture is considered to be an important factor in guiding user behavior and preference, this study innovatively incorporates cultural and human factors into the model to understand how individual cultural orientation influences user preference for innovative human-machine interaction (HMI) features. Firstly, this study considered five Hofstede cultural dimensions as potential impact factors and constructed a prediction model through the random forest algorithm so as to analyze the influence mechanism of culture. Subsequently, K-means clustering was used to classify the sample into three user groups and then predict their preferences for the innovative features in the intelligent cabin. The results showed that users with a higher power distance index preferred a sense of ceremony and show-off-related features such as ambient lighting and welcome mode, whereas users with high individualism were keen on a more open and personalized in-vehicle information system. Long-term orientation was found to be associated with features that help to improve efficiency, and users with a lower level of uncertainty avoidance and restraint were more likely to be attracted to new features and were also more willing to use entertainment-related features. The methodology developed in this study can be widely applied to people in different countries, thus effectively exploring the personal requirements of different individuals, guiding further user experience design and localization when breaking into a new market.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3