Genetically Modified Soybean Detection Using a Biosensor Electrode with a Self-Assembled Monolayer of Gold Nanoparticles

Author:

Chou Cheng-Chi,Lin Ying-Ting,Kuznetsova IrenORCID,Wang Gou-Jen

Abstract

In this study, we proposed a genosensor that can qualitatively and quantitatively detect genetically modified soybeans using a simple electrode with evenly distributed single layer gold nanoparticles. The DNA sensing electrode is made by sputtering a gold film on the substrate, and then sequentially depositing 1,6-hexanedithiol and gold nanoparticles with sulfur groups on the substrate. Then, the complementary to the CaMV 35S promoter (P35S) was used as the capture probe. The target DNA directly extracted from the genetically modified soybeans rather than the synthesized DNA segments was used to construct the detection standard curve. The experimental results showed that our genosensor could directly detect genetically modified genes extracted from soybeans. We obtained two percentage calibration curves. The calibration curve corresponding to the lower percentage range (1–6%) exhibits a sensitivity of 2.36 Ω/% with R2 = 0.9983, while the calibration curve corresponding to the higher percentage range (6–40%) possesses a sensitivity of 0.1 Ω/% with R2 = 0.9928. The limit of detection would be 1%. The recovery rates for the 4% and 5.7% GMS DNA were measured to be 104.1% and 102.49% with RSD at 6.24% and 2.54%. The gold nanoparticle sensing electrode developed in this research is suitable for qualitative and quantitative detection of genetically modified soybeans and can be further applied to the detection of other genetically modified crops in the future.

Funder

Ministry of Science and Technology of Taiwan

Russian Ministry of Science and Education

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Reference37 articles.

1. Genetically modified plants and human health

2. 20th Anniversary (1996 to 2015) of the Global Commercialization of Biotech Crops and Biotech Crop Highlights in 2015;James,2015

3. Genetically modified foods and social concerns;Mohajer;Avicenna J. Med. Biotechnol.,2011

4. Public Acceptance of Plant Biotechnology and GM Crops

5. Transgenic Crops and Sustainable Agriculture in the European Context

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Nanoparticular/Nanovesicular Systems as Biosensors;Recent Progress in Pharmaceutical Nanobiotechnology: A Medical Perspective;2023-12-27

2. Recent Advances in Electrochemical Biosensors for Food Control;Micromachines;2023-07-13

3. Recent advances in gold electrode fabrication for low-resource setting biosensing;Lab on a Chip;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3