A Review on Flexible Electrochemical Biosensors to Monitor Alcohol in Sweat

Author:

Costa Nuna G.ORCID,Antunes Joana C.ORCID,Paleo Antonio J.ORCID,Rocha Ana M.

Abstract

The continued focus on improving the quality of human life has encouraged the development of increasingly efficient, durable, and cost-effective products in healthcare. Over the last decade, there has been substantial development in the field of technical and interactive textiles that combine expertise in electronics, biology, chemistry, and physics. Most recently, the creation of textile biosensors capable of quantifying biometric data in biological fluids is being studied, to detect a specific disease or the physical condition of an individual. The ultimate goal is to provide access to medical diagnosis anytime and anywhere. Presently, alcohol is considered the most commonly used addictive substance worldwide, being one of the main causes of death in road accidents. Thus, it is important to think of solutions capable of minimizing this public health problem. Alcohol biosensors constitute an excellent tool to aid at improving road safety. Hence, this review explores concepts about alcohol biomarkers, the composition of human sweat and the correlation between alcohol and blood. Different components and requirements of a biosensor are reviewed, along with the electrochemical techniques to evaluate its performance, in addition to construction techniques of textile-based biosensors. Special attention is given to the determination of biomarkers that must be low cost and fast, so the use of biomimetic materials to recognize and detect the target analyte is turning into an attractive option to improve electrochemical behavior.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Reference129 articles.

1. WHO Kicks off a Decade of Action for Road Safety https://www.who.int/news/item/28-10-2021-who-kicks-off-a-decade-of-action-for-road-safety

2. Fatores de Risco Auto Reportados Associados aos Acidentes Rodoviários: Um Estudo Sobre os Condutores Portugueses de Veículos Ligeiros https://run.unl.pt/handle/10362/14807

3. WHO https://www.who.int/news-room/fact-sheets/detail/alcohol

4. Ethanol biosensors based on alcohol oxidase

5. Identification of bacterial N-acylhomoserine lactones (AHLs) with a combination of ultra-performance liquid chromatography (UPLC), ultra-high-resolution mass spectrometry, and in-situ biosensors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3