Robust PVC Identification by Fusing Expert System and Deep Learning

Author:

Cai ZhipengORCID,Wang Tiantian,Shen Yumin,Xing Yantao,Yan Ruqiang,Li Jianqing,Liu Chengyu

Abstract

Premature ventricular contraction (PVC) is one of the common ventricular arrhythmias, which may cause stroke or sudden cardiac death. Automatic long-term electrocardiogram (ECG) analysis algorithms could provide diagnosis suggestion and even early warning for physicians. However, they are mutually exclusive in terms of robustness, generalization and low complexity. In this study, a novel PVC recognition algorithm that combines deep learning-based heartbeat template clusterer and expert system-based heartbeat classifier is proposed. A long short-term memory-based auto-encoder (LSTM-AE) network was used to extract features from ECG heartbeats for K-means clustering. Thus, the templates were constructed and determined based on clustering results. Finally, the PVC heartbeats were recognized based on a combination of multiple rules, including template matching and rhythm characteristics. Three quantitative parameters, sensitivity (Se), positive predictive value (P+) and accuracy (ACC), were used to evaluate the performances of the proposed method on the MIT-BIH Arrhythmia database and the St. Petersburg Institute of Cardiological Technics database. Se on the two test databases was 87.51% and 87.92%, respectively; P+ was 92.47% and 93.18%, respectively; and ACC was 98.63% and 97.89%, respectively. The PVC scores on the third China Physiological Signal Challenge 2020 training set and hidden test set were 36,256 and 46,706, respectively, which could rank first in the open-source codes. The results showed that the combination strategy of expert system and deep learning can provide new insights for robust and generalized PVC identification from long-term single-lead ECG recordings.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Distinguished Young Scholars of Jiangsu Province

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3