NDN Content Store and Caching Policies: Performance Evaluation

Author:

Silva Elídio Tomás daORCID,Macedo Joaquim Melo Henriques deORCID,Costa António Luís DuarteORCID

Abstract

Among various factors contributing to performance of named data networking (NDN), the organization of caching is a key factor and has benefited from intense studies by the networking research community. The performed studies aimed at (1) finding the best strategy to adopt for content caching; (2) specifying the best location, and number of content stores (CS) in the network; and (3) defining the best cache replacement policy. Accessing and comparing the performance of the proposed solutions is as essential as the development of the proposals themselves. The present work aims at evaluating and comparing the behavior of four caching policies (i.e., random, least recently used (LRU), least frequently used (LFU), and first in first out (FIFO)) applied to NDN. Several network scenarios are used for simulation (2 topologies, varying the percentage of nodes of the content stores (5–100), 1 and 10 producers, 32 and 41 consumers). Five metrics are considered for the performance evaluation: cache hit ratio (CHR), network traffic, retrieval delay, interest re-transmissions, and the number of upstream hops. The content request follows the Zipf–Mandelbrot distribution (with skewness factor α=1.1 and α=0.75). LFU presents better performance in all considered metrics, except on the NDN testbed, with 41 consumers, 1 producer and a content request rate of 100 packets/s. For the level of content store from 50% to 100%, LRU presents a notably higher performance. Although the network behavior is similar for both skewness factors, when α=0.75, the CHR is significantly reduced, as expected.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference64 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3