A Study on Energy Efficiency of a Distributed Processing Scheme for Image-Based Target Recognition for Internet of Multimedia Things

Author:

Soudani Adel1ORCID,Alsabhan Manal2ORCID,Almusallam Manan2ORCID

Affiliation:

1. Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

2. Department of Computer Science, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11432, Saudi Arabia

Abstract

A growing number of services and applications are developed using multimedia sensing low-cost wireless devices, thus creating the Internet of Multimedia Things (IoMT). Nevertheless, energy efficiency and resource availability are two of the most challenging issues to overcome when developing image-based sensing applications. In depth, image-based sensing and transmission in IoMT significantly drain the sensor energy and overwhelm the network with redundant data. Event-based sensing schemes can be used to provide efficient data transmission and an extended network lifetime. This paper proposes a novel approach for distributed event-based sensing achieved by a cluster of processing nodes. The proposed scheme aims to balance the processing load across the nodes in the cluster. This study demonstrates the adequacy of distributed processing to extend the lifetime of the IoMT platform and compares the efficiency of Haar wavelet decomposition and general Fourier descriptors (GFDs) as a feature extraction module in a distributed features-based target recognition system. The results show that the distributed processing of the scheme based on the Haar wavelet transform of the image outperforms the scheme based on a general Fourier shape descriptor in recognition accuracy of the target as well as the energy consumption. In contrast to a GFD-based scheme, the recognition accuracy of a Haar-based scheme was increased by 26%, and the number of sensing cycles was increased from 40 to 70 cycles, which attests to the adequacy of the proposed distributed Haar-based processing scheme for deployment in IoMT devices.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3