Predicting Employee Attrition Using Machine Learning Techniques

Author:

Fallucchi FrancescaORCID,Coladangelo MarcoORCID,Giuliano RomeoORCID,William De Luca Ernesto

Abstract

There are several areas in which organisations can adopt technologies that will support decision-making: artificial intelligence is one of the most innovative technologies that is widely used to assist organisations in business strategies, organisational aspects and people management. In recent years, attention has increasingly been paid to human resources (HR), since worker quality and skills represent a growth factor and a real competitive advantage for companies. After having been introduced to sales and marketing departments, artificial intelligence is also starting to guide employee-related decisions within HR management. The purpose is to support decisions that are based not on subjective aspects but on objective data analysis. The goal of this work is to analyse how objective factors influence employee attrition, in order to identify the main causes that contribute to a worker’s decision to leave a company, and to be able to predict whether a particular employee will leave the company. After the training, the obtained model for the prediction of employees’ attrition is tested on a real dataset provided by IBM analytics, which includes 35 features and about 1500 samples. Results are expressed in terms of classical metrics and the algorithm that produced the best results for the available dataset is the Gaussian Naïve Bayes classifier. It reveals the best recall rate (0.54), since it measures the ability of a classifier to find all the positive instances and achieves an overall false negative rate equal to 4.5% of the total observations.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference38 articles.

1. The Impact of Artificial Intelligence on Innovation;Cockburn,2019

2. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making

3. Artificial intelligence for decision making in the era of Big Data;Yanqing;Int. J. Inf. Manag.,2019

4. Automated business process management-in times of digital transformation using machine learning or artificial intelligence;Paschek,2017

5. Artificial Intelligence, Economics, and Industrial Organization;Varian,2018

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3