IoT-Enabled Soil Nutrient Analysis and Crop Recommendation Model for Precision Agriculture

Author:

Senapaty Murali Krishna1,Ray Abhishek1,Padhy Neelamadhab2ORCID

Affiliation:

1. School of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India

2. School of Engineering, GIET University, Gunupur 765022, India

Abstract

Healthy and sufficient crop and food production are very much essential for everyone as the population is increasing globally. The production of crops affects the economy of a country to a great extent. In agriculture, observing the soil, weather, and water availability and, based on these factors, selecting an appropriate crop, finding the availability of seeds, analysing crop demand in the market, and having knowledge of crop cultivation are important. At present, many advancements have been made in recent times, starting from crop selection to crop cutting. Mainly, the roles of the Internet of Things, cloud computing, and machine learning tools help a farmer to analyse and make better decisions in each stage of cultivation. Once suitable crop seeds are chosen, the farmer shall proceed with seeding, monitoring crop growth, disease detection, finding the ripening stage of the crop, and then crop cutting. The main objective is to provide a continuous support system to a farmer so that he can obtain regular inputs about his field and crop. Additionally, he should be able to make proper decisions at each stage of farming. Artificial intelligence, machine learning, the cloud, sensors, and other automated devices shall be included in the decision support system so that it will provide the right information within a short time span. By using the support system, a farmer will be able to take decisive measures without fully depending on the local agriculture offices. We have proposed an IoT-enabled soil nutrient classification and crop recommendation (IoTSNA-CR) model to recommend crops. The model helps to minimise the use of fertilisers in soil so as to maximise productivity. The proposed model consists of phases, such as data collection using IoT sensors from cultivation lands, storing this real-time data into cloud memory services, accessing this cloud data using an Android application, and then pre-processing and periodic analysis of it using different learning techniques. A sensory system was prepared with optimised cost that contains different sensors, such as a soil temperature sensor, a soil moisture sensor, a water level indicator, a pH sensor, a GPS sensor, and a colour sensor, along with an Arduino UNO board. This sensory system allowed us to collect moisture, temperature, water level, soil NPK colour values, date, time, longitude, and latitude. The studies have revealed that the Agrinex NPK soil testing tablets should be applied to a soil sample, and then the soil colour can be sensed using an LDR colour sensor to predict the phosphorus (P), nitrogen (N), and potassium (K) values. These collected data together were stored in Firebase cloud storage media. Then, an Android application was developed to fetch and analyse the data from the Firebase cloud service from time to time by a farmer. In this study, a novel approach was identified via the hybridisation of algorithms. We have developed an algorithm using a multi-class support vector machine with a directed acyclic graph and optimised it using the fruit fly optimisation method (MSVM-DAG-FFO). The highest accuracy rate of this algorithm is 0.973, compared to 0.932 for SVM, 0.922 for SVM kernel, and 0.914 for decision tree. It has been observed that the overall performance of the proposed algorithm in terms of accuracy, recall, precision, and F-Score is high compared to other methods. The IoTSNA-CR device allows the farmer to maintain his field soil information easily in the cloud service using his own mobile with minimum knowledge. Additionally, it reduces the expenditure to balance the soil minerals and increases productivity.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference57 articles.

1. Precision agriculture using IoT data analytics and machine learning;Akhter;J. King Saud Univ.-Comput. Inf. Sci.,2021

2. Smart farming IoT platform based on edge and cloud computing;Santa;Biosyst. Eng.,2019

3. A nutrient recommendation system for soil fertilization based on evolutionary computation;Ahmed;Comput. Electron. Agric.,2021

4. The role of big data analytics in Internet of Things;Ahmed;Comput. Netw.,2017

5. Sivakumar, R., Prabadevi, B., Velvizhi, G., Muthuraja, S., Kathiravan, S., Biswajita, M., and Madhumathi, A. (2022). IoT Applications Computing, IntechOpen.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3