On Using GeoGebra and ChatGPT for Geometric Discovery

Author:

Botana Francisco1ORCID,Recio Tomas2ORCID,Vélez María Pilar2ORCID

Affiliation:

1. Departamento de Matemática Aplicada I, Universidade de Vigo, Campus A Xunqueira, 36005 Pontevedra, Spain

2. Departamento de Matemáticas y Física, Escuela Politécnica Superior, Universidad Nebrija, C/Santa Cruz de Marcenado 27, 28015 Madrid, Spain

Abstract

This paper explores the performance of ChatGPT and GeoGebra Discovery when dealing with automatic geometric reasoning and discovery. The emergence of Large Language Models has attracted considerable attention in mathematics, among other fields where intelligence should be present. We revisit a couple of elementary Euclidean geometry theorems discussed in the birth of Artificial Intelligence and a non-trivial inequality concerning triangles. GeoGebra succeeds in proving all these selected examples, while ChatGPT fails in one case. Our thesis is that both GeoGebra and ChatGPT could be used as complementary systems, where the natural language abilities of ChatGPT and the certified computer algebra methods in GeoGebra Discovery can cooperate in order to obtain sound and—more relevant—interesting results.

Funder

the Spanish MICINN

Publisher

MDPI AG

Reference20 articles.

1. Newell, A., Shaw, J.C., and Simon, H.A. (1957). Empirical explorations of the logic theory machine: A case study in heuristic. Papers Presented at the February 26–28, 1957, Western Joint Computer Conference: Techniques for Reliability, Association for Computing Machinery.

2. Whitehead, A.N., and Russell, B. (1935). Principia Mathematica, Cambridge University Press. [2nd ed.].

3. Gelernter, H. (2014). Realization of a geometry—Theorem proving machine. English, with English French, German, Russian, and Spanish summaries. Information processing. International Conference on Information Processing, UNESCO, Paris 15–20 June 1959, UNESCO, Paris, R. Oldenbourg, Munich, and Butterworths, London, 1960, Cambridge University Press.

4. Gelernter, H., Hansen, J., and Loveland, D. (1960, January 3–5). Empirical Explorations of the Geometry-Theorem Proving Machine. Proceedings of the Western Joint IRE-AIEE-ACM Computer Conference, San Francisco, CA, USA.

5. Advancing mathematics by guiding human intuition with AI;Davies;Nature,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3