Vehicle Auto-Classification Using Machine Learning Algorithms Based on Seismic Fingerprinting

Author:

Ahmad Ahmad BahaaORCID,Saibi HakimORCID,Belkacem Abdelkader NasreddineORCID,Tsuji TakeshiORCID

Abstract

Most vehicle classification systems now use data from images or videos. However, these approaches violate drivers’ privacy and reveal their identities. Due to various disruptions, detecting automobiles using seismic ambient noise signals is challenging. This study uses seismic surface waves to compare time series data between different vehicle types. We applied various artificial intelligence approaches using raw data from three different vehicle sizes (Bus/Truck, Car, and Motorcycle) and background noise. By using vertical component seismic data, this study compares the decoding abilities of Logistic Regression, Support Vector Machine, and Naïve Bayes (NB) approaches to determine the class of automobiles. The Multiclass classifiers were trained on 4185 samples and tested on 1395 randomly chosen from actual and synthetic data sets. Additionally, we used the convolutional neural network approach as a baseline to assess the effectiveness of machine learning (ML) methods. The NB method showed relatively high classification accuracy during training for the three multiclass classification situations. Overall, we investigate an ML-based decoding technique that can be used for security and traffic analysis across large geographic areas without endangering driver privacy and is more effective and economical than conventional methods.

Funder

Japan Society for the Promotion of Science

Shikoku Electric Power Co

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Method For Traffic Violation Detection Using Deep Learning;2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS);2023-11-07

2. Identifying Earthquakes in Low-Cost Sensor Signals Contaminated with Vehicular Noise;Applied Sciences;2023-09-30

3. Ambient Noise Tomography and Machine Learning Models to Reveal Geothermal Structure in the Taupo Volcanic Zone;2023-09-21

4. Contextually aware roadside radiation measurement testbed;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-05

5. Automatic damaged vehicle estimator using enhanced deep learning algorithm;Intelligent Systems with Applications;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3