Flexural Eigenfrequency Analysis of Healthy and Pathological Tissues Using Machine Learning and Nonlocal Viscoelasticity

Author:

Farajpour Ali12,Ingman Wendy V.12ORCID

Affiliation:

1. Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia

2. Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia

Abstract

Biomechanical characteristics can be used to assist the early detection of many diseases, including breast cancer, thyroid nodules, prostate cancer, liver fibrosis, ovarian diseases, and tendon disorders. In this paper, a scale-dependent viscoelastic model is developed to assess the biomechanical behaviour of biological tissues subject to flexural waves. The nonlocal strain gradient theory, in conjunction with machine learning techniques such as extreme gradient boosting, k-nearest neighbours, support vector machines, and random forest, is utilised to develop a computational platform for biomechanical analysis. The coupled governing differential equations are derived using Hamilton’s law. Transverse wave analysis is conducted to investigate different normal and pathological human conditions including ovarian cancer, breast cancer, and ovarian fibrosis. Viscoelastic, strain gradient, and nonlocal effects are used to describe the impact of fluid content, stiffness hardening caused by the gradients of strain components, and stiffness softening associated with the nonlocality of stress components within the biological tissues and cells. The integration of the scale-dependent biomechanical continuum model with machine learning facilitates the adoption of the developed model in practical applications by allowing for learning from clinical data, alongside the intrinsic mechanical laws that govern biomechanical responses.

Funder

University of Adelaide Robinson Research Institute’s Innovation Seed Funding and the Faculty of Health and Medical Sciences (Adelaide Medical School) Building Research Leaders Award

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3