Monkeypox Outbreak Analysis: An Extensive Study Using Machine Learning Models and Time Series Analysis

Author:

Priyadarshini Ishaani1,Mohanty Pinaki2,Kumar Raghvendra3ORCID,Taniar David4ORCID

Affiliation:

1. School of Information, University of California, Berkeley, CA 94704, USA

2. Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA

3. Department of Computer Science and Engineering, GIET University, Odisha 765022, India

4. Faculty of Information Technology, Monash University, Wellington Rd, Clayton, VIC 3800, Australia

Abstract

The sudden unexpected rise in monkeypox cases worldwide has become an increasing concern. The zoonotic disease characterized by smallpox-like symptoms has already spread to nearly twenty countries and several continents and is labeled a potential pandemic by experts. monkeypox infections do not have specific treatments. However, since smallpox viruses are similar to monkeypox viruses administering antiviral drugs and vaccines against smallpox could be used to prevent and treat monkeypox. Since the disease is becoming a global concern, it is necessary to analyze its impact and population health. Analyzing key outcomes, such as the number of people infected, deaths, medical visits, hospitalizations, etc., could play a significant role in preventing the spread. In this study, we analyze the spread of the monkeypox virus across different countries using machine learning techniques such as linear regression (LR), decision trees (DT), random forests (RF), elastic net regression (EN), artificial neural networks (ANN), and convolutional neural networks (CNN). Our study shows that CNNs perform the best, and the performance of these models is evaluated using statistical parameters such as mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and R-squared error (R2). The study also presents a time-series-based analysis using autoregressive integrated moving averages (ARIMA) and seasonal auto-regressive integrated moving averages (SARIMA) models for measuring the events over time. Comprehending the spread can lead to understanding the risk, which may be used to prevent further spread and may enable timely and effective treatment.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and Analysis of Monkeypox Outbreak Using a New Time Series Ensemble Technique;Axioms;2024-08-14

2. Sustainable and intelligent time-series models for epidemic disease forecasting and analysis;Sustainable Technology and Entrepreneurship;2024-05

3. Significance of internet of things in monkeypox virus;Multimedia Tools and Applications;2024-02-12

4. Utilizing Time Series Analysis to Discern Smallpox Infection;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

5. An Adaptive Convolutional Neural Network-Random Forest Model for Human Monkeypox Detection and Severity Grading;2024 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC);2024-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3