Humidity Sensor Composed of Laser-Induced Graphene Electrode and Graphene Oxide for Monitoring Respiration and Skin Moisture

Author:

Fei Xianxiang1ORCID,Huang Junyi2,Shi Wenqing1ORCID

Affiliation:

1. School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China

2. College of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

Respiratory rate and skin humidity are important physiological signals and have become an important basis for disease diagnosis, and they can be monitored by humidity sensors. However, it is difficult to employ high-quality humidity sensors on a broad scale due to their high cost and complex fabrication. Here, we propose a reliable, convenient, and efficient method to mass-produce humidity sensors. A capacitive humidity sensor is obtained by ablating a polyimide (PI) film with a picosecond laser to produce an interdigital electrode (IDE), followed by drop-casting graphene oxide (GO) as a moisture-sensitive material on the electrode. The sensor has long-time stability, a wide relative humidity (RH) detection range from 10% to 90%, and high sensitivity (3862 pF/%RH). In comparison to previous methods, the technology avoids the complex procedures and expensive costs of conventional interdigital electrode preparation. Furthermore, we discuss the effects of the electrode gap size and the amount of graphene oxide on humidity sensor performance, analyze the humidity sensing mechanism by impedance spectrum, and finally perform the monitoring of human respiratory rate and skin humidity change in a non-contact manner.

Funder

National Natural Science Foundation of China

Guangdong Ocean University Education Quality Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3