Object-Based Ensemble Learning for Pan-European Riverscape Units Mapping Based on Copernicus VHR and EU-DEM Data Fusion

Author:

Demarchi LucaORCID,van de Bund Wouter,Pistocchi Alberto

Abstract

Recent developments in the fields of geographical object-based image analysis (GEOBIA) and ensemble learning (EL) have led the way to the development of automated processing frameworks suitable to tackle large-scale problems. Mapping riverscape units has been recognized in fluvial remote sensing as an important concern for understanding the macrodynamics of a river system and, if applied at large scales, it can be a powerful tool for monitoring purposes. In this study, the potentiality of GEOBIA and EL algorithms were tested for the mapping of key riverscape units along the main European river network. The Copernicus VHR Image Mosaic and the EU Digital Elevation Model (EU-DEM)—both made available through the Copernicus Land Monitoring Service—were integrated within a hierarchical object-based architecture. In a first step, the most well-known EL techniques (bagging, boosting and voting) were tested for the automatic classification of water, sediment bars, riparian vegetation and other floodplain units. Random forest was found to be the best-to-use classifier, and therefore was used in a second phase to classify the entire object-based river network. Finally, an independent validation was performed taking into consideration the polygon area within the accuracy assessment, hence improving the efficiency of the classification accuracy of the GEOBIA-derived map, both globally and by geographical zone. As a result, we automatically processed almost 2 million square kilometers at a spatial resolution of 2.5 meters, producing a riverscape-units map with a global overall accuracy of 0.915, and with per-class F1 accuracies in the range 0.79–0.97. The obtained results may allow for future studies aimed at quantitative, objective and continuous monitoring of river evolutions and fluvial geomorphological processes at the scale of Europe.

Funder

European Commission

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3