Estimation of Global Cropland Gross Primary Production from Satellite Observations by Integrating Water Availability Variable in Light-Use-Efficiency Model

Author:

Du Dandan,Zheng ChaoleiORCID,Jia LiORCID,Chen QitingORCID,Jiang MinORCID,Hu GuangchengORCID,Lu Jing

Abstract

Satellite-based models have been widely used to estimate gross primary production (GPP) of terrestrial ecosystems. Although they have many advantages for mapping spatiotemporal variations of regional or global GPP, the performance in agroecosystems is relatively poor. In this study, a light-use-efficiency model for cropland GPP estimation, named EF-LUE, driven by remote sensing data, was developed by integrating evaporative fraction (EF) as limiting factor accounting for soil water availability. Model parameters were optimized first using CO2 flux measurements by eddy covariance system from flux tower sites, and the optimized parameters were further spatially extrapolated according to climate zones for global cropland GPP estimation in 2001–2019. The major forcing datasets include the fraction of absorbed photosynthetically active radiation (FAPAR) data from the Copernicus Global Land Service System (CGLS) GEOV2 dataset, EF from the ETMonitor model, and meteorological forcing variables from ERA5 data. The EF-LUE model was first evaluated at flux tower site-level, and the results suggested that the proposed EF-LUE model and the LUE model without using water availability limiting factor, both driven by flux tower meteorology data, explained 82% and 74% of the temporal variations of GPP across crop sites, respectively. The overall KGE increased from 0.73 to 0.83, NSE increased from 0.73 to 0.81, and RMSE decreased from 2.87 to 2.39 g C m−2 d−1 in the estimated GPP after integrating EF in the LUE model. These improvements may be largely attributed to parameters optimized for different climatic zones and incorporating water availability limiting factor expressed by EF into the light-use-efficiency model. At global scale, the verification by GPP measurements from cropland flux tower sites showed that GPP estimated by the EF-LUE model driven by ERA5 reanalysis meteorological data and EF from ETMonitor had overall the highest R2, KGE, and NSE and the smallest RMSE over the four existing GPP datasets (MOD17 GPP, revised EC-LUE GPP, GOSIF GPP and PML-V2 GPP). The global GPP from the EF-LUE model could capture the significant negative GPP anomalies during drought or heat-wave events, indicating its ability to express the impacts of the water stress on cropland GPP.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3