Performance of an Innovative Bio-Based Wood Chip Storage Pile Cover—Can It Replace Plastic Tarps?

Author:

Prinz RobertORCID,Routa JohannaORCID,Anerud Erik,Bergström DanORCID,Sikanen Lauri

Abstract

There is currently great general interest in reducing the use of fossil-based materials. Fossil-based tarps are still widely used as cover for wood chip storage piles, causing additional waste or requiring further waste treatment in the supply chain. This study aimed to investigate the performance of an innovative bio-based wood chip pile cover compared to conventional treatments (plastic-covered and uncovered) in eastern Finnish conditions. The experiment evaluated the drying process during the storage of stemwood chips during 5.9 months of storage. It included the developments of temperature, moisture content, heating value, energy content, basic density, particle size distribution, and the dry matter losses of a total of six piles. As a result, the forest stemwood chips dried by 11%, with dry-matter losses of 4.3%, when covered with the bio-pile cover. Using the plastic covering, the forest stemwood chips dried by 22%, with dry matter losses of 2.9%. At the end of the experiment, the energy content in plastic-covered piles was 6.1% higher than uncovered piles and 3.1% higher than bio-pile-covered piles. While differences in the key drying performance parameters can be observed, the differences between uncovered piles and those covered with plastic tarps, as well as between the bio-based and the uncovered piles, were not statistically significant. We conclude that the bio-based cover, under the studied conditions, do not render better storage conditions than in current practices. However, our study indicates possible fossil-substitutional benefits by using a bio-based cover, which calls for further R&D work in this matter.

Funder

IEA Bioenergy Task 43

Academy of Finland

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

1. Energy Consumption 2020 (Preliminary),2021

2. Roundwood and Biomass Logistics in Finland and Sweden

3. Alternative operation models for using a feed-in terminal as a part of the forest chip supply system for a CHP plant

4. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A European Strategy for Plastics in a Circular Economy. Brussels. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1516265440535&uri=COM:2018:28:FIN

5. Natural drying treatments during seasonal storage of wood for bioenergy in different European locations

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3