Splicing Method of Micro-Nano-Scale Pore Radius Distribution in Tight Sandstone Reservoir

Author:

Zhang Shiming,Yu Chunlei,Su JunweiORCID,Liu DengkeORCID

Abstract

Accurate characterization of the micro- and nano-pore radius values in a tight sandstone reservoir is the key work to reasonably evaluate reservoir properties. The previous exploration of pore-stitching methods is mainly based on the morphological extension of similar segments. However, few scholars compare and verify the image and non-image stitching methods, so they cannot clarify the application scope of different pore-stitching methods. In this study, the pore structures of eight selected tight sandstone samples were evaluated using high-pressure mercury injection, nuclear magnetic resonance, scanning electron microscope, and the helium porosity test. Then, the C-value fitting, interpolation fitting, and morphological fitting were used to establish high-pressure mercury injection and Nuclear Magnetic Resonance (NMR) pore distribution curves to evaluate the differences among the micro-nano-scale pore radius values determined by the three fitting methods. Finally, the pore radius distribution is extracted from the binary image of Scanning Electron Microscope (SEM). After correcting the helium porosity data, the application scope of different fitting methods is evaluated by using the mean standard deviation verification method, and the optimal solution of the stitching method of pore radius distribution in each application scope is found. Compared to other studies, this research demonstrated three relatively simple methods for the determination of the full range of pore size distributions, providing a reliable method to evaluate the prerequisites of the range of application. This study provides a new idea for the micro-nano-scale pore radius splicing method of a tight sandstone reservoir, and the research results can provide a reference for the actual reservoir evaluation of oil and gas fields.

Funder

National Natural Science Foundation of China

Shaanxi Province Key Research and Development Plan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3