Abstract
Monitoring of railroad wagons is important for logistical processes, but above all for safety. One of the key parameters to be monitored is the temperature of the axle box and the bearings in the bogie. The problem with monitoring these parameters is the harsh environment and lack of power supply. In our research, we present a power supply system for a WSN node monitoring the bogie parameters. Knowing the operating conditions, we built a power supply system using a piezoelectric energy harvester. The harvester consists of three piezoelectric elements placed on a double arm pendulum beam. The circuit was modeled in the Comsol Multiphysics environment and then built and tested in laboratory conditions. After confirming energy efficiency, the system was tested on a freight car bogie during an 8 h trip. At typical car vibration frequencies (4–10 Hz), the system is able to generate 73 uW. Combined with an energy buffer of 1000 mAh (3.7 V), it can power a WSN node (based on the nRF5340 chip) for 13 years of operation.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献