Continuous Piecewise Linear Approximation of Plant-Based Hydro Production Function for Generation Scheduling Problems

Author:

dos Santos Abreu David LucasORCID,Finardi Erlon CristianORCID

Abstract

An essential challenge in generation scheduling (GS) problems of hydrothermal power systems is the inclusion of adequate modeling of the hydroelectric production function (HPF). The HPF is a nonlinear and nonconvex function that depends on the head and turbined outflow. Although the hydropower plants have multiple generating units (GUs), due to a series of complexities, the most attractive modeling practice is to represent one HPF per plant, i.e., a single function is built for representing the plant generation instead of the generation of each GU. Furthermore, due to the computation time constraints and representation of nonlinearities, the HPF must be given by a piecewise linear (PWL) model. This paper presented some continuous PWL models to include the HPF per plant in GS problems of hydrothermal systems. Depending on the type of application, the framework allows a choice between the concave PWL for HPF modeled with one or two variables and the nonconvex (more accurate) PWL for HPF dependent only on the turbined outflow. Basically, in both PWL models, offline, mixed-integer linear (or quadratic) programming techniques are used with an optimized pre-selection of the original HPF dataset obtained through the Ramer-Douglas-Peucker algorithm. As a highlight, the framework allows the control of the number of hyperplanes and, consequently, the number of variables and constraints of the PWL model. To this end, we offer two possibilities: (i) minimizing the error for a fixed number of hyperplanes, or (ii) minimizing the number of hyperplanes for a given error. We assessed the performance of the proposed framework using data from two large hydropower plants of the Brazilian system. The first has 3568 MW distributed in 50 Bulb-type GUs and operates as a run-of-river hydro plant. In turn, the second, which can vary the reservoir volume by up to 1000 hm3, possesses 1140 MW distributed in three Francis-type units. The results showed a variation from 0.040% to 1.583% in terms of mean absolute error and 0.306% to 6.356% regarding the maximum absolute error even with few approximations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3