RRGA-Net: Robust Point Cloud Registration Based on Graph Convolutional Attention

Author:

Qian Jian1ORCID,Tang Dewen1

Affiliation:

1. School of Mechanical Engineering, University of South China, Hengyang 421001, China

Abstract

The problem of registering point clouds in scenarios with low overlap is explored in this study. Previous methodologies depended on having a sufficient number of repeatable keypoints to extract correspondences, making them less effective in partially overlapping environments. In this paper, a novel learning network is proposed to optimize correspondences in sparse keypoints. Firstly, a multi-layer channel sampling mechanism is suggested to enhance the information in point clouds, and keypoints were filtered and fused at multi-layer resolutions to form patches through feature weight filtering. Moreover, a template matching module is devised, comprising a self-attention mapping convolutional neural network and a cross-attention network. This module aims to match contextual features and refine the correspondence in overlapping areas of patches, ultimately enhancing correspondence accuracy. Experimental results demonstrate the robustness of our model across various datasets, including ModelNet40, 3DMatch, 3DLoMatch, and KITTI. Notably, our method excels in low-overlap scenarios, showcasing superior performance.

Funder

Hunan Provincial Regional Joint Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3