Abstract
Placentation is one of the most important determinants for a successful pregnancy, and this is dependent on the process of trophoblast migration and invasion. Progesterone receptors (PGR) are critical effectors of progesterone (P4) signaling that is required for trophoblast migration and invasion conducive to a successful gestation. In immune complicated pregnancies, evidence has shown that abnormal placentation occurs because of aberrant expression of PGR. Therapeutic intervention with tacrolimus (FK506) was able to restore PGR expression and improve pregnancy outcomes in immune-complicated gestations; however, the exact mode of action of tacrolimus in assisting placentation is not clear. Here, we attempt to uncover the mode of action of tacrolimus by examining its effects on trophoblast invasion and migration in the human-derived extravillous trophoblast (EVT) cell line, the HTR-8/SVneo cells. Using a variety of functional assays, we demonstrated that low-dose tacrolimus (10 ng/mL) was sufficient to significantly (p < 0.001) stimulate the migration and invasion of the HTR-8/SVneo cells, inducing their cytosolic/nuclear progesterone receptor expression and activation, and modulating their Nitric Oxide (NO) production. Moreover, tacrolimus abrogated the suppressive effect of the NOS inhibitor Nω- Nitro-L-Arginine Methyl Ester (L-NAME) on these vital processes critically involved in the establishment of human pregnancy. Collectively, our data suggest an immune-independent mode of action of tacrolimus in positively influencing placentation in complicated gestations, at least in part, through promoting the migration and invasion of the first trimester extravillous trophoblast cells by modulating their NO production and activating their cytosolic/nuclear progesterone-receptors. To our knowledge, this is the first report to show that the mode of action of tacrolimus as a monotherapy for implantation failure is plausibly PGR-dependent.
Funder
Canadian Institutes of Health Research
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献