Progress toward Room-Temperature Synthesis and Functionalization of Iron-Oxide Nanoparticles

Author:

Flores-Cano Diego A.ORCID,Checca-Huaman Noemi-RaquelORCID,Castro-Merino Isabel-Liz,Pinotti Camila N.,Passamani Edson C.ORCID,Litterst Fred JochenORCID,Ramos-Guivar Juan A.ORCID

Abstract

Novel magnetic nanohybrids composed of nanomaghemite covered by organic molecules were successfully synthesized at room temperature with different functionalization agents (sodium polystyrene sulfonate, oxalic acid, and cetyltrimethylammonium bromide) in low and high concentrations. Structural, vibrational, morphological, electron energy-loss spectroscopy, magnetic, and Mössbauer characterizations unraveled the presence of mainly cubic inverse spinel maghemite (γ-Fe2O3), whilst X-ray diffraction and 57Fe Mössbauer spectroscopy showed that most samples contain a minor amount of goethite phase (α-FeOOH). Raman analysis at different laser power revealed a threshold value of 0.83 mW for all samples, for which the γ-Fe2O3 to α-Fe2O3 phase transition was observed. Imaging microscopy revealed controlled-size morphologies of nanoparticles, with sizes in the range from 8 to 12 nm. Organic functionalization of the magnetic nanoparticles was demonstrated by vibrational and thermogravimetric measurements. For some samples, Raman, magnetic, and Mössbauer measurements suggested an even more complex core-shell-like configuration, with a thin shell containing magnetite (Fe3O4) covering the γ-Fe2O3 surface, thus causing an increase in the saturation magnetization of approximately 11% against nanomaghemite. Field cooling hysteresis curves at 5 K did not evidence an exchange bias effect, confirming that the goethite phase is not directly interacting magnetically with the functionalized maghemite nanoparticles. These magnetic nanohybrids may be suitable for applications in effluent remediation and biomedicine.

Funder

National University of San Marcos

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3