Formulating Eco-Friendly Foamed Mortar by Incorporating Sawdust Ash as a Partial Cement Replacement

Author:

Majeed Samadar S.1ORCID

Affiliation:

1. Civil Engineering Department, Nawroz University, Duhok 42001, Iraq

Abstract

Utilizing sawdust efficiently to produce construction materials can help safeguard the environment and decrease costs by minimizing the need for traditional resources and reducing carbon dioxide (CO2) emissions. Additionally, recycling sawdust plays an essential role in creating a sustainable ecosystem. Hence, this study aimed to examine the potential use of sawdust ash (SDA) as a partial cement replacement on foamed mortar (FM) properties, including its fresh, mechanical, transport, thermal, and microstructural properties. A variety of FM mixtures were tested for workability, density, consistency, intrinsic air permeability, porosity, split tensile strength, compressive strength, flexural strength, and thermal conductivity by replacing cement with SDA at varying percentages of 0%, 10%, 20%, 30%, 40%, and 50%. The results revealed that FM’s workability was reduced by the introduction of SDA with a higher percentage cement replacement, while the density of the FM mixtures was reduced due to SDA’s specific gravity being lower than that of cement. A linear improvement was observed in the air permeability, sorptivity, and porosity of FM–SDA composites with an increased SDA percentage to 20%. It is notable that these properties started to deteriorate once the cement replacement by SDA surpassed 30%. A noticeable improvement of mechanical strength properties of the FM was found at 20% of SDA content, but they deteriorated when the SDA content was more than 30%. FM blends with higher SDA contents exhibited larger and more apparent voids, according to SEM analysis. In conclusion, incorporating sawdust into formulations emerges as a viable method for FM production. This approach not only mitigates the environmental impact of sawdust disposal but also reduces the need for extracting natural resources in construction material manufacturing.

Funder

Nawroz University Centre for Scientific Research and Development

Publisher

MDPI AG

Reference68 articles.

1. The influence of mix design on mechanical properties of oil palm shell lightweight concrete;Serri;J. Mater. Environ. Sci.,2015

2. Influence of oil palm empty fruit bunch (EFB) fibre on drying shrinkage in restrained lightweight foamed mortar;Musa;Int. J. Innov. Techol. Exp. Eng.,2019

3. Assessing the mechanical, durability, thermal and microstructural properties of seashell ash based lightweight foamed concrete;Maglad;Constr. Build Mater.,2023

4. Performance of polymer modified mortar with different dosages of polymeric modifier;Ganesan;MATEC Web Conf.,2014

5. Thin-walled steel enclosed lightweight foamcrete: A novel approach to fabricate sandwich composite;Mydin;Australian J. Basic Appl. Sci.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3