Evaluation of Multi-Source Soil Moisture Datasets over Central and Eastern Agricultural Area of China Using In Situ Monitoring Network

Author:

Yang Yanqing,Zhang Jianyun,Bao ZhenxinORCID,Ao Tianqi,Wang GuoqingORCID,Wu Houfa,Wang Jie

Abstract

Multi-source soil moisture (SM) products provide a vigorous tool for the estimation of soil moisture on a large scale, but it is crucial to carry out the evaluation of those products before further application. In the present work, an evaluation framework on multi-source SM datasets over central and eastern agricultural areas of China was firstly proposed, based on a dense in situ SM monitoring network of 838 stations from 11 July 2012 to 31 December 2017. Each station adopted the most accurate gravimetric method for measuring the actual soil moisture. The effects of land use types and wet–dry conditions on the performances of multi-source SM products were further analyzed. Most satellite/reanalysis SM products could capture the spatial–temporal changes in soil moisture, especially for ERA5 products that matched the closest to the station-measured SM; by contrast, those satellite products showed poor spatial–temporal performances. Such phenomenon was also quantitatively demonstrated by the four statistical metrics correlation coefficient (CC), p-value, bias and root mean squared error (RMSE) between the satellite/reanalysis SM products and the ground-observed SM series. Further, most satellite/reanalysis SM products had poor performances in Forestland and Grassland areas, with a lower CC and a larger positive bias and RMSE. Such overestimation on soil moisture is possibly influenced by the inestimable parameter vegetation geometry and the vegetation water content in the radiative transfer models. The arid areas showed the worst CC between the station-observed SM data and different satellite/reanalysis SM products; meanwhile, the humid and semi-arid areas presented larger SM estimation errors than the other areas, especially for the satellite products. The fairly dry surface soil (arid area) and open water surface contamination (humid area) are suggested to hinder the reading of microwave-based retrieval systems. Additionally, the reanalysis SM products outperformed the satellite SM products in the evaluated areas, with better spatial–temporal performances, seasonality reflection and higher accuracy on SM estimation (higher CC, and lower bias and RMSE). This is because the reanalysis datasets assimilated various sources of datasets, especially the ground-observed data, with high quality. The evaluated results could provide guidance for fusing different satellite/reanalysis products, as a new feasible alternative to monitoring SM information in the future.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

“Six top talents” in Jiangsu province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3