Abstract
Single point positioning (SPP) mode, related to pseudorange measurements, limits the level of accuracy to several meters in open sky and to several dozens of meters in urban canyons. This paper explores the effect of using a large number of SPP observations from low-cost global navigation system (GNSS) receivers, smartphones, and handheld GNSS units. Data segmentation and bootstrapping statistical methods were used to obtain the deviation, which can describe the accuracy of the large sample. The empirical test recording data showed that the error may achieve a sub-meter horizontal accuracy by the simple process of increasing the measurements of smartphones and handheld GNSS units. However, the drawback is the long period of time required. To reduce the satellite tracking time, a least squares solution network was applied over all the recorded data, assisted by the external geometric conditions. The final goal was to obtain the absolute positioning and associated deviations of one vertex from three or five GNSS receivers positioned on a network. The process was tested in three geodetic network examples. The results indicated that the enhanced SPP mode was able to improve its accuracy. Errors of several meters were reduced to values close to 50 cm in 25–37 min periods.
Subject
General Earth and Planetary Sciences
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献