Numerical Investigation of the Adsorption Process of Zeolite/Water in a Thermochemical Reactor for Seasonal Heat Storage

Author:

Abohamzeh ElhamORCID,Frey GeorgORCID

Abstract

Zeolite 13X molecular sieve with high sorption capacity and significant sorption rate has been considered a promising candidate for seasonal heat storage. In this study, a code is developed to simulate the adsorption process between zeolite and water in all ranges of partial pressures, temperatures, and sorbate loadings. The results from the proposed code were compared with experiments and good agreement was observed. After validation, the developed model was used to study the effective parameters involved in the adsorption process of binder-free Zeolite 13X. A parametric study considering various temperatures and water content in the inflow air was conducted and the influence of different factors on the outlet temperature and adsorption enthalpy has been studied. This parametric study gives a good insight into the measures which can be taken for achieving the desired released energy or having the outlet temperature in the preferred range. The simulations have been conducted in a variety of temperature ranges provided during the desorption process, the humidity amount, and the mass flow rate of the incoming air. The relative influence of each parameter in the specified ranges is presented. The results have demonstrated the direct relationship of the partial pressure of water vapor and the desorption temperature with the adsorbed water amount and adsorption enthalpy while changing the mass flow rate mostly influences the discharging time.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3