Abstract
This paper introduces the concept, theory of operation and applications of soft open points for direct current networks (DCSOPs). The DCSOP is based on a bidirectional DC–DC converter actively controlled to behave like a normal conductor. Unlike the normal conductor, the DCSOP can transfer the electric power between nodes at different voltage levels. With this advantage, the DCSOP can effectively control the power flow direction. Thus, DCSOPs can play a vital role in the reconfiguration of DC distribution networks. The operation and control of the DCSOP device was investigated, both in transient and steady-state conditions. Then, a DCSOP was integrated into a DC microgrid model to validate its ability to change the power flow through the modelled feeders. In addition, a set of reliability indicators was calculated for the DC microgrid under different reconfiguration scenarios. It was shown that reliability is improved when the DCSOP device implements network reconfiguration. Finally, an agent-based framework for controlling the DCSOP in a DC microgrid is presented. A fundamental implementation was created for reconfiguring a DC microgrid with a DCSOP controlled by an agent, proving that the agent-based system can effectively control the DCSOP device for reconfiguration and voltage regulation.
Funder
the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献