Wide Concentration Range of Tb3+ Doping Influence on Scintillation Properties of (Ce, Tb, Gd)3Ga2Al3O12 Crystals Grown by the Optical Floating Zone Method

Author:

Wu Tong,Wang Ling,Shi YunORCID,Huang Xintang,Zhang Qian,Xiong Yifei,Wang Hui,Fang Jinghong,Ni Jinqi,He Huan,Wang Chaoyue,Zhou Zhenzhen,Liu Qian,Li Qin,Yu Jianding,Shichalin OlegORCID,Papynov EvgeniyORCID

Abstract

To obtain a deeper understand of the energy transfer mechanism between Ce3+ and Tb3+ ions in the aluminum garnet hosts, (Ce, Tb, Gd)3Ga2Al3O12 (GGAG:Ce, Tb) single crystals grown by the optical floating zone (OFZ) method were investigated systematically in a wide range of Tb3+ doping concentration (1–66 at.%). Among those, crystal with 7 at.% Tb reached a single garnet phase while the crystals with other Tb3+ concentrations are mixed phases of garnet and perovskite. Obvious Ce and Ga loss can be observed by an energy dispersive X-ray spectroscope (EDS) technology. The absorption bands belonging to both Ce3+ and Tb3+ ions can be observed in all crystals. Photoluminescence (PL) spectra show the presence of an efficient energy transfer from the Tb3+ to Ce3+ and the gradually quenching effect with increasing of Tb3+ concentration. GGAG: 1% Ce3+, 7% Tb3+ crystal was found to possess the highest PL intensity under excitation of 450 nm. The maximum light yield (LY) reaches 18,941 pho/MeV. The improved luminescent and scintillation characteristics indicate that the cation engineering of Tb3+ can optimize the photoconversion performance of GGAG:Ce.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3