Prediction of Seismic Bearing Capacity Considering Nonlinearity and Dilatancy by Sequential Quadratic Programming

Author:

Liao Hong1,Zhou De1

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

Abstract

Most of the published literature regarding bearing capacity are often focused on linear and associative soils. Concerning the intrinsic strength nonlinearity in dilatancy soils, this study investigates the problem of the seismic bearing capacity in the framework of the kinematic theorem of limit analysis. The conventional linear Mohr–Coulomb criterion is substituted with a nonlinear power law criterion to depict the nonlinearity of the soil strength. The non-associative feature of soil materials is considered by defining a nonlinear dilatancy coefficient. A generalized tangential technique is accordingly introduced to linearize the strength envelope for making the nonlinear criterion tractable in the analysis. A non-symmetrical translational failure mechanism that is comprised of several rigid wedges is used to characterize the failure of the foundation at the limit state. Moreover, the seismic action is considered by the classic pseudo-static method. Based upon the energy equilibrium theory of the upper-bound limit analysis, new analytical solutions are derived from the work-balanced equation with nonlinearity and dilatancy. This rigorous upper-bound solution is formulated as a multivariate optimization problem and is readily addressed by sequential quadratic programming (SQP). To verify the reliability of the new expressions, the present results are compared with already posted solutions and the original pseudo-dynamic solutions. The comparative results show a good agreement with previous works, and the correctness and rationality of the new analytical solutions are validated. The detailed parametric study reveals that, in the non-associative flow soils, the ultimate bearing capacity is significantly decreased with a reduction in the dilatancy coefficient. Particularly in the linear condition, namely m = 1, the larger the internal friction angle is, the more obvious the influence of the non-associative feature on the bearing capacity is.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3