Non-Autoregressive Sparse Transformer Networks for Pedestrian Trajectory Prediction

Author:

Liu Di12,Li Qiang1,Li Sen1,Kong Jun1,Qi Miao3

Affiliation:

1. College of Information Science and Technology, Northeast Normal University, Changchun 130117, China

2. School of Computer Science, Northeast Electric Power University, Jilin City 132012, China

3. Key Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun 130024, China

Abstract

Pedestrian trajectory prediction is an important task in practical applications such as automatic driving and surveillance systems. It is challenging to effectively model social interactions among pedestrians and capture temporal dependencies. Previous methods typically emphasized social interactions among pedestrians but ignored the temporal consistency of predictions and suffered from superfluous interactions by dense undirected graphs, resulting in a considerable deviance from reality. In addition, autoregressive approaches predicted future locations conditioning on previous predictions one by one, which would lead to error accumulation and time consuming. To address these issues, we present Non-autoregressive Sparse Transformer (NaST) networks for pedestrian trajectory prediction. Specifically, NaST models sparse spatial interactions and sparse temporal dependency via a sparse spatial transformer and a sparse temporal transformer separately. Different from previous predictions such as RNN-based approaches, the transformer decoder works in non-autoregressive pattern and predicts all the future locations at one time from a query sequence, which could avoid the error accumulation and be less computationally intensive. We evaluate our proposed method on the ETH and UCY datasets, and the experimental results show our method outperforms comparative state-of-the-art methods.

Funder

National Natural Science Foundation of China

the Fund of Jilin Provincial Science and Technology Department

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference66 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3