Optimization of the 3D Point Cloud Registration Algorithm Based on FPFH Features

Author:

Sun Ruiyang1ORCID,Zhang Enzhong1,Mu Deqiang1,Ji Shijun2,Zhang Ziqiang1,Liu Hongwei1ORCID,Fu Zheng1

Affiliation:

1. School of Mechanical and Electrical Engineering, Changchun University of Technology, Yan ‘an Avenue, Changchun 130012, China

2. School of Mechanical and Aerospace Engineering, Jilin University, People’s Street, Changchun 130025, China

Abstract

In order to solve the problem of the traditional iterative closest point algorithm (ICPA), which requires a high initial position of point cloud and improves the speed and accuracy of point cloud registration, a new registration method is proposed in this paper. Firstly, the rough registration method is optimized. As for the extraction of the feature points, a new method of feature point extraction is adopted, which can better keep the features of the original point cloud. At the same time, the traditional point cloud filtering method is improved, and a voxel idea is introduced to filter the point cloud. The edge length data of the voxels is determined by the density, and the experimentally verified noise removal rates for the 3D cloud data are 95.3%, 98.6%, and 93.5%, respectively. Secondly, a precise registration method that combines the curvature feature and fast point feature histogram (FPFH) is proposed in the precise registration stage, and the algorithm is analyzed experimentally. Finally, the two point cloud data sets Stanford bunny and free-form surface are analyzed and verified, and it is concluded that this method can reduce the error by about 40.16% and 36.27%, respectively, and improve the iteration times by about 42.9% and 37.14%, respectively.

Funder

Jilin Natural Science Foundation

Jilin Science and Technology Department

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3