An Optical Intervention to Improve Cycling Time Trials: A Feasibility Study

Author:

Matthys Dries12ORCID,Vleugels Jochen2ORCID,Denis Kathleen1ORCID,Dieryckx Tim3,Verwulgen Stijn2

Affiliation:

1. Department of Mechanical Engineering, KU Leuven, Campus Group T, 3000 Leuven, Belgium

2. Product Development, Faculty of Design Sciences, University of Antwerp, 2000 Antwerp, Belgium

3. Voxdale BVBA, 2110 Wijnegem, Belgium

Abstract

(1) Background: Many professional and recreational cyclists experience that neck extension in time trial position negatively impacts either speed, comfort, or power production—especially at high cycling speeds or for long distances. We conducted a feasibility study with one subject to assess whether redirecting the sight of a cyclist while in time trial position could reduce aerodynamic drag and neck strain by maintaining a more neutral neck position. (2) Methods: A physical immersive exercise bike was developed (called a FAAST-trainer) that emulates posture, velocity, and power to be delivered by the user through an adaptable power load adjusted in real time. As an optical intervention, we used prism glasses to redirect the cyclist’s sight. The subject trained his perceptive-muscular system while cycling on the FAAST-trainer to get used to wearing prism glasses. He feels confident that the glasses are safe to test for future experiments in a velodrome. (3) Results: A consistent reduction in drag was found (p < 001) when wearing prism glasses with the FAAST-trainer, ranging from 3.5% to 4.7%. Accordingly, the cyclist could thus save between 9.7 watts and 13.0 watts cycling at 45 km/h, compared to having his head in an upright position. (4) Conclusions: Our experiment on the FAAST-trainer indicates that an optical intervention to reduce neck extension by redirecting sight might be safe to use for outdoor cycling. However, no vestibular effects, neither auditive nor complex combinations, were assessed, so we recommend additional research and development of a dedicated design for the prism glasses. Outdoor experiments should be conducted to confirm this reduction in aerodynamic drag and further asses the safety when wearing prism glasses.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3