Spherical Atomic Norm-Inspired Approach for Direction-of-Arrival Estimation of EM Waves Impinging on Spherical Antenna Array with Undefined Mutual Coupling

Author:

Famoriji Oluwole John1ORCID,Shongwe Thokozani1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering Science, University of Johannesburg, Auckland Park, 2006, Johannesburg P.O. Box 524, South Africa

Abstract

A spherical antenna array (SAA) is an array-designed arrangement capable of scanning in almost all the radiation sphere with constant directivity. It finds recent applications in aerospace, spacecraft, vehicular and satellite communications. Therefore, estimation of the direction-of-arrival (DoA) of electromagnetic (EM) waves that impinge on an SAA with unknown mutual coupling called for research attention. This paper proposed a spherical harmonic atomic norm minimization (SHANM) for DoA estimation using an SAA configuration. The gridless sparse signal recovery problem is considered in the spherical harmonic (SH) domain in conjunction with the atomic norm minimization (ANM). Because of the unavailability of the Vandermonde structure in the SH domain, the theorem of Vandermonde decomposition that is the mathematical basis of the traditional ANM methods finds no application in SH. Addressing this challenge, a low-dimensional semidefinite programming (SDP) approach implementing the SHANM method is developed. This approach is independent of Vandermonde decomposition, and directly recovers the atomic decomposition in SH. The numerical experimental results show the superior performance of the proposed method against the previous methods. In addition, accounting for the impacts of mutual coupling, an experimental measured data, which is the generally accepted ground of testing any method, is employed to illustrate the efficacy and robustness of the proposed methods. Finally, for achieving DoA estimation with sufficient localization accuracy using a SAA, the proposed SHANM-based method is a better option.

Funder

University of Johannesburg

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3