Affiliation:
1. Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah 42351, Saudi Arabia
Abstract
Diabetes is a complex disease that can lead to serious health complications if left unmanaged. Early detection and treatment of diabetes is crucial, and data analysis and predictive techniques can play a significant role. Data mining techniques, such as classification and prediction models, can be used to analyse various aspects of data related to diabetes, and extract useful information for early detection and prediction of the disease. XGBoost classifier is a machine learning algorithm that effectively predicts diabetes with high accuracy. This algorithm uses a gradient-boosting framework and can handle large and complex datasets with high-dimensional features. However, it is important to note that the choice of the best algorithm for predicting diabetes may depend on the specific characteristics of the data and the research question being addressed. In addition to predicting diabetes, data analysis and predictive techniques can also be used to identify risk factors for diabetes and its complications, monitor disease progression, and evaluate the effectiveness of treatments. These techniques can provide valuable insights into the underlying mechanisms of the disease and help healthcare providers make informed decisions about patient care. Data analysis and predictive techniques have the potential to significantly improve the early detection and management of diabetes, a fast-growing chronic disease that notable health hazards. The XGBoost classifier showed the most effectiveness, with an accuracy rate of 89%.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献