Enhancing Gas Recovery in Tight Dolomite Reservoirs: A Study of Water-Lock Damage and Chemical Drainage

Author:

Yang Xiaopeng12ORCID,Fei Hongtao3,Shi Junfeng12,Sheng Lianqi3,Guo Donghong12,Yao Erdong3ORCID

Affiliation:

1. Research Institute of Petroleum Exploration and Development, Beijing 100083, China

2. State Key Laboratory of Enhanced Oil Recovery, Beijing 100083, China

3. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China

Abstract

The Lower Paleozoic Ordovician strata within the Ordos Basin harbor dolomite gas reservoirs are characterized by low porosity (0.98% to 14.2%) and low permeability (0.001 mD to 2.8 mD). Gas extraction from these reservoirs is frequently impeded by water lock due to the intrusion of water-based drilling fluids and the accumulation of formation water, which increase water saturation near the wellbore and significantly decrease gas permeability. This research is pivotal in elucidating water-lock mechanisms and developing water-unlocking strategies for such tight gas reservoirs. Comprehensive analysis through wettability tests, spontaneous imbibition, high-speed centrifugal drainage, and nuclear magnetic resonance (NMR) revealed that Jingbian gas field rocks are predominantly water-wet with a spontaneous imbibition water saturation of 60% to 80%, indicating a high propensity for water lock. The pore structure, mainly within the 200 to 300 nm range, presents challenges as high-speed centrifugation achieves only 70% to 80% water saturation displacement, with a drainage rate of about 20% to 30% and a drastic decline in gas permeability by several orders of magnitude. This study identifies the surfactant sodium dodecyl benzene sulfonate (SDBS) as an optimal agent for enhancing water displacement and gas production. At a 0.1% concentration, SDBS improves drainage rate and permeability by 58.5% and 69.42%, respectively, demonstrating its efficacy in mitigating water lock and enhancing recoverability in tight dolomite reservoirs. These findings serve as a scientific guide for augmenting production in similar geological settings.

Funder

National Natural Science Foundation of China

the Strategic Cooperation Technology Projects of CNPC and CUPB

the National Science and Technology Major Projects of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3