Measurement of Ion Energy Distribution and Deposition of Ti Thin Films Using ABPPS Technology on Glass Substrate

Author:

Kim Dae-Chul,Kim Young-Woo,Kim Yong-Hyun,Park Jong-Bae,Kim Jong-SikORCID,Han Duk-Sun

Abstract

Ion energy distributions (IEDs) play an important role in material processes and thin film deposition. We developed a newly designed multistep pulsed power supply (modulator) for the asymmetric bipolar pulsed power sputtering (ABPPS) technology and studied the effect of reverse bias voltage in improving the properties of thin films through Ti deposition. Using an ion energy analyzer, we confirmed IEDs and relative ion intensity under a reverse bias voltage of the modulator at the substrate position. A dense plasma was generated near the sputter target at reverse bias voltages above 300 V. Experiments were conducted by varying the bias voltage applied to the sputter target and the duty cycle of the modulator. Our results demonstrate that the in-house-built ABPPS system can be used to clean the sample surfaces without requiring additional energy sources or substrate bias and that thin films prepared using this system have a smoother surface than those prepared by conventional sputtering.

Funder

National Research Council of Science and Technology

Korea Institute of Fusion Energy (KFE) funded by the Government funds, Republic of Korea

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3