Synthesis of CaCO3-Based Hyperdispersants and Their Application in Aqueous Coatings

Author:

Bai Jue1ORCID,Li Yu2

Affiliation:

1. College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China

2. College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

As an essential pigment particle in white water-based coatings, light calcium carbonate (CaCO3) is difficult to disperse in water-based systems. The hard-to-disperse particles agglomerate, causing the viscosity of the coating to rise, which in turn affects the quality of the coating. Therefore, in order to obtain efficient dispersion, the hyperdispersant SSS–MPEGA–DMAEA (SMD) has been prepared in this study using sodium styrene sulfonate (SSS), polyethylene glycol monomethyl ether acrylate (MPEGA), and dimethylaminoethyl acrylate (DMAEA) as monomers through aqueous solution polymerization. Firstly, we utilized the central composite design method to conduct mathematical modeling of the monomer ratios so as to optimize the dispersion performance of the hyperdispersants. Secondly, the structural characteristics and molecular weight distribution of SMD were characterized by 1H NMR spectroscopy and GPC. Then, the effect of SMD on the dispersion of the CaCO3 slurry was investigated through particle size distribution and TEM measurements. Finally, we applied the SMD in aqueous white coatings and tested the surface properties of the paint film by SEM as well as the stability of the paint film. The results showed that SMD can significantly reduce the viscosity and particle size of the CaCO3 slurry. The waterborne coatings prepared by SMD had good storage stability and corrosion resistance, so the materials owned broad application prospects.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3