Temperature Dependence of Electrical Resistance in Graphite Films Deposited on Glass and Low-Density Polyethylene by Spray Technology

Author:

Longo AngelaORCID,Di Bartolomeo AntonioORCID,Faella EnverORCID,Pelella AnielloORCID,Giubileo FilippoORCID,Sorrentino AndreaORCID,Palomba MarianoORCID,Carotenuto GianfrancoORCID,Barucca GianniORCID,Tagliaferro AlbertoORCID,Coscia UbaldoORCID

Abstract

Graphite lacquer was simply sprayed on glass and low-density polyethylene (LDPE) substrates to obtain large area films. Scanning Electron Microscopy (SEM) images, Raman spectra, X Ray Diffraction (XRD) spectra and current-voltage characteristics show that at room temperature, the as-deposited films on different substrates have similar morphological, structural and electrical properties. The morphological characterization reveals that the films are made of overlapped graphite platelets (GP), each composed of nanoplatelets with average sizes of a few tens of nanometers and about forty graphene layers. The thermoresistive properties of the GP films deposited on the different substrates and investigated in the temperature range from 20 to 120 °C show very different behaviors. For glass substrate, the resistance of the film decreases monotonically as a function of temperature by 7%; for LDPE substrate, the film resistance firstly increases more than one order of magnitude in the 20–100 °C range, then suddenly decreases to a temperature between 105 and 115 °C. These trends are related to the thermal expansion properties of the substrates and, for LDPE, also to the phase transitions occurring in the investigated temperature range, as evidenced by differential scanning calorimetry measurements.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3