Study on Phonon Localization in Silicon Film by Molecular Dynamics

Author:

Zhang Jian,Zhang HaochunORCID,Wang Qi,Sun Wenbo,Zhang Dong

Abstract

In recent years, nanoscale thermal cloaks have received extensive attention from researchers. Amorphization, perforation, and concave are commonly used methods for building nanoscale thermal cloaks. However, the comparison of the three methods and the effect of different structural proportions on phonon localization have not been found. Therefore, in this paper, an asymmetrical structure is constructed to study the influence of different structure proportions on phonon localization by amorphization, perforation, and concave silicon film. We first calculated the phonon density of states (PDOS) and the mode participation rate (MPR). To quantitatively explore its influence on phonon localization, we proposed the concept of the degree of phonon localization (DPL) and explored the influence of center and edge effects on phonon localization. We found that for different processing methods, the degree of phonon localization increased with the increase in the processing regions. Compared to the edge, the center had a stronger influence on phonon localization, and the higher the degree of disorder, the stronger the phonon localization. Our research can guide the construction of a nanoscale thermal cloak.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3